本帖最后由 glwz007 于 2023-5-30 22:20 编辑      前言 一、项目由来         我是一个物理老师,也是一个喜欢折腾实验的老师,在信息化数字化的浪潮下,一直有一个想法,就是将传统的物理实验信息化、数字化,在这方面我一直处于学习和不断的制作中。
        在中学物理实验中,电学实验也是一个重点,而电学实验,离不开电学三个基本物理量电压、电流、电阻的测量,这次先从电压的测量工具电压表入手进行学习。
        二、对电压表的对比分析         1. 传统的电压表 
        中学物理实验室传统的电压表都是电磁式电表,如下图所示:
      它是基于灵敏电流计G改装得到,下图是灵敏电流计G(俗称表头)的构造图,它的原理是利用通电线圈在磁场中受力转动,通过电流计的电流越大,与线圈相连接的指针转过的角度越大。
        通过串并联电路,可以将表头改装为不同量程的电压表和电流表。
这种传统的电流表,属于模拟式电压表,优点是结构简单,价格便宜,测量频率范围较宽;缺点是精度、分辨力较低,不便于与计算机组成自动测试系统。
        2.数字式电压表 
        数字是电压表用A/D转换器和数字显示器代替了模拟电压表的测量显示部分,优缺点基本上正好与模拟式电压表相反。
        在中学实验室,常用的数字式电表,大多是商品化的DIS系统,DIS( Digital Information System) 实验技术,又称“数字化信息系统”,是由“传感器、数据采集器、实验软件包(教材专用软件、通用扩展软件)、计算机”等构成的新型实验系统。该系统成功地克服了传统物理实验仪器的诸多弊端,有力地支持了信息技术与物理教学的全面整合。
        但是这种系统价格相对比较高,于是我萌生了自制数字电压表的想法,下面是初步的实验过程。
         三、基于Beetle ESP32-C3 + ADS1115的数字电压表          前段时间,DFRobot论坛开展了Beetle ESP32-C3的免费试用活动,于是我申请了两块作为实验用主控板,在此向DFRobot表示衷心的感谢!
        (一)主要硬件 
       本次使用的主要元件如下:
       2.显示屏采用12864OLED,OLED 屏幕作为一种新型的显示技术,其自身可以发光,亮度,对比度高,功耗低,在当下备受追捧。而在我们正常的显示调整参数过程中,我们越来越多的使用这种屏幕。我们使用的一般是分辨率为 128x64 ,屏幕尺寸为 0.96 寸。
       3.AD转换器采用ADS1115,ADS1115是一种精密16位模数转换器(ADC),能将模拟信号转换为数字信号。它采用I2C接口进行通信,并具有四个单端或两个差分输入通道。由于其高精度和低功耗特性,ADS1115广泛用于温度、压力、湿度等传感器的数据采集与处理。
       (二)编程软件 
       在以往的制作中,我大多数情况下采用图形化编程模式,这次转换使用代码编程。采用MicroPython,编辑器为Thonny。Thonny 是一个面向初学者的 Python IDE
Thonny 由爱沙尼亚的 Tartu 大学开发,它采用了不同的方法,因为它的调试器是专为学习和教学编程而设计的。
       (三)制作过程 
       1. 硬件搭建
       将Beetle ESP32-C3、12864OLED屏、ADS1115通过连接线连接到面包板上,为了改变测量电压,还接了一个1KΩ的电位器,将电位器可变电压提供给自制电压表和数字万用表测量作为对比。连接示意图如下:
       2. 软件编程
       (2)编程环境配置
刷好固件后,启动Thonny,选择“运行”菜单,进行如下图配置:
       点击“视图”菜单中“文件”选项,如果前面配置正常,将会显示主控板中文件,一开始应该是空的。
       (3)新建”ssd1306.py”,复制下面代码,保存到“MicroPython设备”作为12864OLED显示屏的库。
#MicroPython SSD1306 OLED driver, I2C and SPI interfaces created by Adafruit
  
 import time
 import framebuf
  
 # register definitions
 SET_CONTRAST        = const(0x81)
 SET_ENTIRE_ON       = const(0xa4)
 SET_NORM_INV        = const(0xa6)
 SET_DISP            = const(0xae)
 SET_MEM_ADDR        = const(0x20)
 SET_COL_ADDR        = const(0x21)
 SET_PAGE_ADDR       = const(0x22)
 SET_DISP_START_LINE = const(0x40)
 SET_SEG_REMAP       = const(0xa0)
 SET_MUX_RATIO       = const(0xa8)
 SET_COM_OUT_DIR     = const(0xc0)
 SET_DISP_OFFSET     = const(0xd3)
 SET_COM_PIN_CFG     = const(0xda)
 SET_DISP_CLK_DIV    = const(0xd5)
 SET_PRECHARGE       = const(0xd9)
 SET_VCOM_DESEL      = const(0xdb)
 SET_CHARGE_PUMP     = const(0x8d)
  
  
 class SSD1306:
     def __init__(self, width, height, external_vcc):
         self.width = width
         self.height = height
         self.external_vcc = external_vcc
         self.pages = self.height // 8
         # Note the subclass must initialize self.framebuf to a framebuffer.
         # This is necessary because the underlying data buffer is different
         # between I2C and SPI implementations (I2C needs an extra byte).
         self.poweron()
         self.init_display()
  
     def init_display(self):
         for cmd in (
             SET_DISP | 0x00, # off
             # address setting
             SET_MEM_ADDR, 0x00, # horizontal
             # resolution and layout
             SET_DISP_START_LINE | 0x00,
             SET_SEG_REMAP | 0x01, # column addr 127 mapped to SEG0
             SET_MUX_RATIO, self.height - 1,
             SET_COM_OUT_DIR | 0x08, # scan from COM[N] to COM0
             SET_DISP_OFFSET, 0x00,
             SET_COM_PIN_CFG, 0x02 if self.height == 32 else 0x12,
             # timing and driving scheme
             SET_DISP_CLK_DIV, 0x80,
             SET_PRECHARGE, 0x22 if self.external_vcc else 0xf1,
             SET_VCOM_DESEL, 0x30, # 0.83*Vcc
             # display
             SET_CONTRAST, 0xff, # maximum
             SET_ENTIRE_ON, # output follows RAM contents
             SET_NORM_INV, # not inverted
             # charge pump
             SET_CHARGE_PUMP, 0x10 if self.external_vcc else 0x14,
             SET_DISP | 0x01): # on
             self.write_cmd(cmd)
         self.fill(0)
         self.show()
  
     def poweroff(self):
         self.write_cmd(SET_DISP | 0x00)
  
     def contrast(self, contrast):
         self.write_cmd(SET_CONTRAST)
         self.write_cmd(contrast)
  
     def invert(self, invert):
         self.write_cmd(SET_NORM_INV | (invert & 1))
  
     def show(self):
         x0 = 0
         x1 = self.width - 1
         if self.width == 64:
             # displays with width of 64 pixels are shifted by 32
             x0 += 32
             x1 += 32
         self.write_cmd(SET_COL_ADDR)
         self.write_cmd(x0)
         self.write_cmd(x1)
         self.write_cmd(SET_PAGE_ADDR)
         self.write_cmd(0)
         self.write_cmd(self.pages - 1)
         self.write_framebuf()
  
     def fill(self, col):
         self.framebuf.fill(col)
  
     def pixel(self, x, y, col):
         self.framebuf.pixel(x, y, col)
  
     def scroll(self, dx, dy):
         self.framebuf.scroll(dx, dy)
  
     def text(self, string, x, y, col=1):
         self.framebuf.text(string, x, y, col)
  
  
 class SSD1306_I2C(SSD1306):
     def __init__(self, width, height, i2c, addr=0x3c, external_vcc=False):
         self.i2c = i2c
         self.addr = addr
         self.temp = bytearray(2)
         # Add an extra byte to the data buffer to hold an I2C data/command byte
         # to use hardware-compatible I2C transactions.  A memoryview of the
         # buffer is used to mask this byte from the framebuffer operations
         # (without a major memory hit as memoryview doesn't copy to a separate
         # buffer).
         self.buffer = bytearray(((height // 8) * width) + 1)
         self.buffer[0] = 0x40  # Set first byte of data buffer to Co=0, D/C=1
         self.framebuf = framebuf.FrameBuffer1(memoryview(self.buffer)[1:], width, height)
         super().__init__(width, height, external_vcc)
  
     def write_cmd(self, cmd):
         self.temp[0] = 0x80 # Co=1, D/C#=0
         self.temp[1] = cmd
         self.i2c.writeto(self.addr, self.temp)
  
     def write_framebuf(self):
         # Blast out the frame buffer using a single I2C transaction to support
         # hardware I2C interfaces.
         self.i2c.writeto(self.addr, self.buffer)
  
     def poweron(self):
         pass
  
  
 class SSD1306_SPI(SSD1306):
     def __init__(self, width, height, spi, dc, res, cs, external_vcc=False):
         self.rate = 10 * 1024 * 1024
         dc.init(dc.OUT, value=0)
         res.init(res.OUT, value=0)
         cs.init(cs.OUT, value=1)
         self.spi = spi
         self.dc = dc
         self.res = res
         self.cs = cs
         self.buffer = bytearray((height // 8) * width)
         self.framebuf = framebuf.FrameBuffer1(self.buffer, width, height)
         super().__init__(width, height, external_vcc)
  
     def write_cmd(self, cmd):
         self.spi.init(baudrate=self.rate, polarity=0, phase=0)
         self.cs.high()
         self.dc.low()
         self.cs.low()
         self.spi.write(bytearray([cmd]))
         self.cs.high()
  
     def write_framebuf(self):
         self.spi.init(baudrate=self.rate, polarity=0, phase=0)
         self.cs.high()
         self.dc.high()
         self.cs.low()
         self.spi.write(self.buffer)
         self.cs.high()
  
     def poweron(self):
         self.res.high()
         time.sleep_ms(1)
         self.res.low()
         time.sleep_ms(10)
         self.res.high() 复制代码        新建”ads1x15.py”,复制下面代码,保存到“MicroPython设备”作为ADS1115的库。
# The MIT License (MIT)
 #
 # Copyright (c) 2016 Radomir Dopieralski (@deshipu),
 #               2017 Robert Hammelrath (@robert-hh)
 #
 # Permission is hereby granted, free of charge, to any person obtaining a copy
 # of this software and associated documentation files (the "Software"), to deal
 # in the Software without restriction, including without limitation the rights
 # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 # copies of the Software, and to permit persons to whom the Software is
 # furnished to do so, subject to the following conditions:
 #
 # The above copyright notice and this permission notice shall be included in
 # all copies or substantial portions of the Software.
 #
 # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 # THE SOFTWARE.
 #
 import utime as time
  
 _REGISTER_MASK = const(0x03)
 _REGISTER_CONVERT = const(0x00)
 _REGISTER_CONFIG = const(0x01)
 _REGISTER_LOWTHRESH = const(0x02)
 _REGISTER_HITHRESH = const(0x03)
  
 _OS_MASK = const(0x8000)
 _OS_SINGLE = const(0x8000)  # Write: Set to start a single-conversion
 _OS_BUSY = const(0x0000)  # Read: Bit=0 when conversion is in progress
 _OS_NOTBUSY = const(0x8000)  # Read: Bit=1 when no conversion is in progress
  
 _MUX_MASK = const(0x7000)
 _MUX_DIFF_0_1 = const(0x0000)  # Differential P  =  AIN0, N  =  AIN1 (default)
 _MUX_DIFF_0_3 = const(0x1000)  # Differential P  =  AIN0, N  =  AIN3
 _MUX_DIFF_1_3 = const(0x2000)  # Differential P  =  AIN1, N  =  AIN3
 _MUX_DIFF_2_3 = const(0x3000)  # Differential P  =  AIN2, N  =  AIN3
 _MUX_SINGLE_0 = const(0x4000)  # Single-ended AIN0
 _MUX_SINGLE_1 = const(0x5000)  # Single-ended AIN1
 _MUX_SINGLE_2 = const(0x6000)  # Single-ended AIN2
 _MUX_SINGLE_3 = const(0x7000)  # Single-ended AIN3
  
 _PGA_MASK = const(0x0E00)
 _PGA_6_144V = const(0x0000)  # +/-6.144V range  =  Gain 2/3
 _PGA_4_096V = const(0x0200)  # +/-4.096V range  =  Gain 1
 _PGA_2_048V = const(0x0400)  # +/-2.048V range  =  Gain 2 (default)
 _PGA_1_024V = const(0x0600)  # +/-1.024V range  =  Gain 4
 _PGA_0_512V = const(0x0800)  # +/-0.512V range  =  Gain 8
 _PGA_0_256V = const(0x0A00)  # +/-0.256V range  =  Gain 16
  
 _MODE_MASK = const(0x0100)
 _MODE_CONTIN = const(0x0000)  # Continuous conversion mode
 _MODE_SINGLE = const(0x0100)  # Power-down single-shot mode (default)
  
 _DR_MASK = const(0x00E0)     # Values ADS1015/ADS1115
 _DR_128SPS = const(0x0000)   # 128 /8 samples per second
 _DR_250SPS = const(0x0020)   # 250 /16 samples per second
 _DR_490SPS = const(0x0040)   # 490 /32 samples per second
 _DR_920SPS = const(0x0060)   # 920 /64 samples per second
 _DR_1600SPS = const(0x0080)  # 1600/128 samples per second (default)
 _DR_2400SPS = const(0x00A0)  # 2400/250 samples per second
 _DR_3300SPS = const(0x00C0)  # 3300/475 samples per second
 _DR_860SPS = const(0x00E0)  # -   /860 samples per Second
  
 _CMODE_MASK = const(0x0010)
 _CMODE_TRAD = const(0x0000)  # Traditional comparator with hysteresis (default)
 _CMODE_WINDOW = const(0x0010)  # Window comparator
  
 _CPOL_MASK = const(0x0008)
 _CPOL_ACTVLOW = const(0x0000)  # ALERT/RDY pin is low when active (default)
 _CPOL_ACTVHI = const(0x0008)  # ALERT/RDY pin is high when active
  
 _CLAT_MASK = const(0x0004)  # Determines if ALERT/RDY pin latches once asserted
 _CLAT_NONLAT = const(0x0000)  # Non-latching comparator (default)
 _CLAT_LATCH = const(0x0004)  # Latching comparator
  
 _CQUE_MASK = const(0x0003)
 _CQUE_1CONV = const(0x0000)  # Assert ALERT/RDY after one conversions
 _CQUE_2CONV = const(0x0001)  # Assert ALERT/RDY after two conversions
 _CQUE_4CONV = const(0x0002)  # Assert ALERT/RDY after four conversions
 # Disable the comparator and put ALERT/RDY in high state (default)
 _CQUE_NONE = const(0x0003)
  
 _GAINS = (
     _PGA_6_144V,  # 2/3x
     _PGA_4_096V,  # 1x
     _PGA_2_048V,  # 2x
     _PGA_1_024V,  # 4x
     _PGA_0_512V,  # 8x
     _PGA_0_256V   # 16x
 )
  
 _GAINS_V = (
     6.144,  # 2/3x
     4.096,  # 1x
     2.048,  # 2x
     1.024,  # 4x
     0.512,  # 8x
     0.256  # 16x
 )
  
 _CHANNELS = {
     (0, None): _MUX_SINGLE_0,
     (1, None): _MUX_SINGLE_1,
     (2, None): _MUX_SINGLE_2,
     (3, None): _MUX_SINGLE_3,
     (0, 1): _MUX_DIFF_0_1,
     (0, 3): _MUX_DIFF_0_3,
     (1, 3): _MUX_DIFF_1_3,
     (2, 3): _MUX_DIFF_2_3,
 }
  
 _RATES = (
     _DR_128SPS,   # 128/8 samples per second
     _DR_250SPS,   # 250/16 samples per second
     _DR_490SPS,   # 490/32 samples per second
     _DR_920SPS,   # 920/64 samples per second
     _DR_1600SPS,  # 1600/128 samples per second (default)
     _DR_2400SPS,  # 2400/250 samples per second
     _DR_3300SPS,  # 3300/475 samples per second
     _DR_860SPS    # - /860 samples per Second
 )
  
  
 class ADS1115:
     def __init__(self, i2c, address=0x48, gain=1):
         self.i2c = i2c
         self.address = address
         self.gain = gain
         self.temp2 = bytearray(2)
  
     def _write_register(self, register, value):
         self.temp2[0] = value >> 8
         self.temp2[1] = value & 0xff
         self.i2c.writeto_mem(self.address, register, self.temp2)
  
     def _read_register(self, register):
         self.i2c.readfrom_mem_into(self.address, register, self.temp2)
         return (self.temp2[0] << 8) | self.temp2[1]
  
     def raw_to_v(self, raw):
         v_p_b = _GAINS_V[self.gain] / 32767
         return raw * v_p_b
  
     def set_conv(self, rate=4, channel1=0, channel2=None):
         """Set mode for read_rev"""
         self.mode = (_CQUE_NONE | _CLAT_NONLAT |
                      _CPOL_ACTVLOW | _CMODE_TRAD | _RATES[rate] |
                      _MODE_SINGLE | _OS_SINGLE | _GAINS[self.gain] |
                      _CHANNELS[(channel1, channel2)])
  
     def read(self, rate=4, channel1=0, channel2=None):
         """Read voltage between a channel and GND.
            Time depends on conversion rate."""
         self._write_register(_REGISTER_CONFIG, (_CQUE_NONE | _CLAT_NONLAT |
                              _CPOL_ACTVLOW | _CMODE_TRAD | _RATES[rate] |
                              _MODE_SINGLE | _OS_SINGLE | _GAINS[self.gain] |
                              _CHANNELS[(channel1, channel2)]))
         while not self._read_register(_REGISTER_CONFIG) & _OS_NOTBUSY:
             time.sleep_ms(1)
         res = self._read_register(_REGISTER_CONVERT)
         return res if res < 32768 else res - 65536
  
     def read_rev(self):
         """Read voltage between a channel and GND. and then start
            the next conversion."""
         res = self._read_register(_REGISTER_CONVERT)
         self._write_register(_REGISTER_CONFIG, self.mode)
         return res if res < 32768 else res - 65536
  
     def alert_start(self, rate=4, channel1=0, channel2=None,
                     threshold_high=0x4000, threshold_low=0, latched=False) :
         """Start continuous measurement, set ALERT pin on threshold."""
         self._write_register(_REGISTER_LOWTHRESH, threshold_low)
         self._write_register(_REGISTER_HITHRESH, threshold_high)
         self._write_register(_REGISTER_CONFIG, _CQUE_1CONV |
                              _CLAT_LATCH if latched else _CLAT_NONLAT |
                              _CPOL_ACTVLOW | _CMODE_TRAD | _RATES[rate] |
                              _MODE_CONTIN | _GAINS[self.gain] |
                              _CHANNELS[(channel1, channel2)])
  
     def conversion_start(self, rate=4, channel1=0, channel2=None):
         """Start continuous measurement, trigger on ALERT/RDY pin."""
         self._write_register(_REGISTER_LOWTHRESH, 0)
         self._write_register(_REGISTER_HITHRESH, 0x8000)
         self._write_register(_REGISTER_CONFIG, _CQUE_1CONV | _CLAT_NONLAT |
                              _CPOL_ACTVLOW | _CMODE_TRAD | _RATES[rate] |
                              _MODE_CONTIN | _GAINS[self.gain] |
                              _CHANNELS[(channel1, channel2)])
  
     def alert_read(self):
         """Get the last reading from the continuous measurement."""
         res = self._read_register(_REGISTER_CONVERT)
         return res if res < 32768 else res - 65536
  
  
 class ADS1113(ADS1115):
     def __init__(self, i2c, address=0x48):
         super().__init__(i2c, address, 1)
  
     def raw_to_v(self, raw):
         return super().raw_to_v(raw)
  
     def read(self, rate=4):
         return super().read(rate, 0, 1)
  
     def alert_start(self, rate=4, threshold_high=0x4000, threshold_low=0, latched=False):
         return super().alert_start(rate, 0, 1, threshold_high, threshold_low, latched)
  
     def alert_read(self):
         return super().alert_read()
  
  
 class ADS1114(ADS1115):
     def __init__(self, i2c, address=0x48, gain=1):
         super().__init__(i2c, address, gain)
  
     def raw_to_v(self, raw):
         return super().raw_to_v(raw)
  
     def read(self, rate=4):
         return super().read(rate, 0, 1)
  
     def alert_start(self, rate=4, threshold_high=0x4000, threshold_low=0, latched=False):
         return super().alert_start(rate, 0, 1, threshold_high,
             threshold_low, latched)
  
     def alert_read(self):
         return super().alert_read()
  
  
 class ADS1015(ADS1115):
     def __init__(self, i2c, address=0x48, gain=1):
         super().__init__(i2c, address, gain)
  
     def raw_to_v(self, raw):
         return super().raw_to_v(raw << 4)
  
     def read(self, rate=4, channel1=0, channel2=None):
         return super().read(rate, channel1, channel2) >> 4
  
     def alert_start(self, rate=4, channel1=0, channel2=None, threshold_high=0x400,
         threshold_low=0, latched=False):
         return super().alert_start(rate, channel1, channel2, threshold_high << 4,
             threshold_low << 4, latched)
  
     def alert_read(self):
         return super().alert_read() >> 4 复制代码        新建”main.py”,复制下面代码,作为主程序,主控板启动会自动执行这个程序。
# 使用ADS1115测量电压,并用OLED屏幕显示
  
 import ads1x15 ,time
 from machine import Pin, SoftI2C
 import ssd1306
 import time
  
 i2c = SoftI2C(scl=Pin(9), sda=Pin(8),freq=400000)
 oled = ssd1306.SSD1306_I2C(128, 64 ,i2c)
 adc = ads1x15.ADS1115(i2c)
  
 # 汉字字典
 character_dict = {
     '电': [0x01,0x01,0x01,0x3F,0x21,0x21,0x21,0x3F,0x21,0x21,0x21,0x3F,0x21,0x01,0x01,0x00,
         0x00,0x00,0x00,0xF8,0x08,0x08,0x08,0xF8,0x08,0x08,0x08,0xF8,0x0A,0x02,0x02,0xFE],
     '压': [0x00,0x3F,0x20,0x20,0x20,0x20,0x20,0x2F,0x20,0x20,0x20,0x20,0x20,0x40,0x5F,0x80,
         0x00,0xFE,0x00,0x80,0x80,0x80,0x80,0xFC,0x80,0x80,0x90,0x88,0x88,0x80,0xFE,0x00],
     '流': [0x00,0x20,0x17,0x10,0x81,0x42,0x47,0x10,0x10,0x22,0xE2,0x22,0x22,0x22,0x24,0x08,
         0x80,0x40,0xFE,0x80,0x10,0x08,0xFC,0x04,0x00,0x48,0x48,0x48,0x48,0x4A,0x4A,0x46],
     '测': [0x00,0x27,0x14,0x14,0x85,0x45,0x45,0x15,0x15,0x25,0xE5,0x21,0x22,0x22,0x24,0x08,
         0x04,0xC4,0x44,0x54,0x54,0x54,0x54,0x54,0x54,0x54,0x54,0x04,0x84,0x44,0x14,0x08],
     '量': [0x00,0x1F,0x10,0x1F,0x10,0xFF,0x00,0x1F,0x11,0x1F,0x11,0x1F,0x01,0x1F,0x01,0x7F,
         0x00,0xF0,0x10,0xF0,0x10,0xFE,0x00,0xF0,0x10,0xF0,0x10,0xF0,0x00,0xF0,0x00,0xFC],
     'A': [0x00,0x00,0x00,0x10,0x10,0x18,0x28,0x28,0x24,0x3C,0x44,0x42,0x42,0xE7,0x00,0x00],
     'V': [0x00,0x00,0x00,0xE7,0x42,0x42,0x44,0x24,0x24,0x28,0x28,0x18,0x10,0x10,0x00,0x00],
     ':': [0x00,0x00,0x00,0x00,0x00,0x00,0x18,0x18,0x00,0x00,0x00,0x00,0x18,0x18,0x00,0x00],
     '-': [0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x7E,0x00,0x00,0x00,0x00,0x00,0x00,0x00],
     '.': [0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x60,0x60,0x00,0x00],
     '0': [0x00,0x00,0x00,0x18,0x24,0x42,0x42,0x42,0x42,0x42,0x42,0x42,0x24,0x18,0x00,0x00],
     '1': [0x00,0x00,0x00,0x08,0x38,0x08,0x08,0x08,0x08,0x08,0x08,0x08,0x08,0x3E,0x00,0x00],
     '2': [0x00,0x00,0x00,0x3C,0x42,0x42,0x42,0x02,0x04,0x08,0x10,0x20,0x42,0x7E,0x00,0x00],
     '3': [0x00,0x00,0x00,0x3C,0x42,0x42,0x02,0x04,0x18,0x04,0x02,0x42,0x42,0x3C,0x00,0x00],
     '4': [0x00,0x00,0x00,0x04,0x0C,0x0C,0x14,0x24,0x24,0x44,0x7F,0x04,0x04,0x1F,0x00,0x00],
     '5': [0x00,0x00,0x00,0x7E,0x40,0x40,0x40,0x78,0x44,0x02,0x02,0x42,0x44,0x38,0x00,0x00],
     '6': [0x00,0x00,0x00,0x18,0x24,0x40,0x40,0x5C,0x62,0x42,0x42,0x42,0x22,0x1C,0x00,0x00],
     '7': [0x00,0x00,0x00,0x7E,0x42,0x04,0x04,0x08,0x08,0x10,0x10,0x10,0x10,0x10,0x00,0x00],
     '8': [0x00,0x00,0x00,0x3C,0x42,0x42,0x42,0x24,0x18,0x24,0x42,0x42,0x42,0x3C,0x00,0x00],
     '9': [0x00,0x00,0x00,0x38,0x44,0x42,0x42,0x42,0x46,0x3A,0x02,0x02,0x24,0x18,0x00,0x00]
 }
  
  
 # 显示中文
 def display_zh_character(character, x, y):
     num_list = character_dict[character]
     for i in range(16):
         left = bin(num_list[i]).replace('0b', '')
         right = bin(num_list[i + 16]).replace('0b', '')
     
         # 补 0
         while len(left) < 8:
             left = '0' + left
         while len(right) < 8:
             right = '0' + right
         num_binary = left+right
         for j in range(len(num_binary)):
             oled.pixel(x + j, y + i, int(num_binary[j]))
  
  
 # 显示英文、数字和其他符号
 def display_en_character(character, x, y):
     num_list = character_dict[character]
     for i in range(16):
         left = bin(num_list[i]).replace('0b', '')
         # 补 0
         while len(left) < 8:
             left = '0' + left
         num_binary = left
         for j in range(len(num_binary)):
             oled.pixel(x + j, y + i, int(num_binary[j]))
  
         
 def display_zh(text, x, y):
     for i in range(len(text)):
         display_zh_character(text[i], x + i * 16, y)
  
 def display_en(text, x, y):
     for i in range(len(text)):
         display_en_character(text[i], x + i * 8, y)
  
  
 # 测量电压并显示在oled
 while True:
     value = adc.read() 
     voltage=str('{:.3f}'.format((value/2**15)*4.096)) #量程为4.096V
     oled.fill(0)
     display_zh('电压电流测量', 16, 3)
     display_zh('电压', 0, 24)
     display_en(":",32,24)
     display_en(voltage,40,24)
     display_en('V',(40+len(voltage)*8),24)
     oled.show()
     time.sleep(0.5) 复制代码        完成后文件目录如下图所示:
  四、实验结果 
       下图是连接成功,运行程序,进行测量电压的照片:
       下表是利用自制电压表和数字万用表测量结果对比,由表中可以看出,自制数字电压表测量结果和数字万用表测量结果基本一致,实验取得基本成功。
       近期学校事务较多,时间紧张,实验进行的比较简略和粗糙,我会在以后继续完善和扩充,请各位批评指正。实验中所用图片、库和部分代码,参考了网络资源,仅作为自己学习之用,如有侵权,请联系我修改删除。